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Abstract When the Lanczos method is used to

compute eigenvalues, it is often restarted or used

with the shift-and-invert scheme. The restarted

scheme usually uses less memory but the shift-and-

invert scheme is more robust. In addition, the shift-

and-invert Lanczos method requires accurate solu-

tions of a series of linear systems. Parallel software

packages suitable for these linear systems are only

started to become available. In this talk, we will

present our evaluation of two such packages and

brie
y exam when it is necessary to use the shift-

and-invert scheme.
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1 Introduction

This talk is on how to compute eigenvalues and
eigenvectors of large sparse symmetric matri-
ces on massively parallel machines. One of
the most commonly used algorithms for this
task is the Lanczos method which projects the
large eigenvalue problem onto a low dimen-
sional Krylov subspace [3, 10]. In most cases,
the Krylov subspace basis is built through a se-
ries of matrix-vector multiplications, the whole
Lanczos method can be implemented with a
matrix-vector multiplication routine and a few
simple vector operations. This algorithm is
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highly eÆcient on parallel machines and it is
e�ective for computing extreme and well sepa-
rated eigenvalues.

To compute the interior or not well-
separated eigenvalues, the shift-and-invert
Lanczos method is one of the most e�ective
methods. Since the eigenvalues of a matrix A

are related to the eigenvalues of (A � �I)�1

by a simple relation (�(A) = � + 1=�((A �
�I)�1)) and the corresponding eigenvectors of
A and (A� �I)�1 are identical, the shift-and-
invert scheme computes the extreme eigenval-
ues of (A� �I)�1 and deduce the correspond-
ing eigenvalues of A. With appropriate choice
of �, the extreme eigenvalues of (A��I)�1 are
well separated and can be easily computed. To
build a Krylov subspace basis of (A��I)�1, the
shift-and-invert Lanczos method solves a series
of linear systems with the coeÆcient matrix
(A��I). The linear systems need to be solved
accurately and the only reliable means to ac-
complish this is by using a direct method [4].
Because it is diÆcult to implement sparse di-
rect solvers on parallel machines, eÆcient par-
allel implementation has not been widely avail-
able until recently [1, 7]. This talk will present
our study of the parallel eÆciency of the shift-
and-invert Lanczos method using these newly
available direct solvers.

When the shift-and-invert Lanczos method
cannot be used, the restarted Lanczos method
is used. In recent years, there have been sig-
ni�cantly improvements to restarting which
enhance the overall e�ectiveness [2, 13]. In
this talk we will also present a small number
of comparisons between the restarted Lanc-
zos method and the shift-and-invert Lanczos
method to determine when to use each method.
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2 The software packages

Before giving the comparison data, this section
brie
y describes the software packages used.
The four packages consists of two parallel di-
rect method packages and two versions of Lanc-
zos method.

SPOOLES This parallel direct method
package implements factorization procedures
for symmetric and nonsymmetric, real and
complex matrices. The basic algorithm is
based on the fundamental supernode tree [1].
In our study, this package is only used to solve
simple symmetric linear systems. In this case,
it computes a diagonal matrix D and an upper
triangular matrix U such that UTDU = A. It
performs pivoting if diagonal element is found
to be small. This is the main package to be
evaluated because it is designed to be used in
the shift-and-invert Lanczos method.

PSPASES This parallel direct solver soft-
ware package implements a multifrontal
Cholesky factorization for symmetric positive
de�nite matrices, i.e., it computes an upper
triangular matrix U such that UTU = A [7].
Because it requires the input matrix to be pos-
itive de�nite, there is no need to perform piv-
oting. In practice, this also prevents it from
factoring some ill-conditioned matrices. Com-
pared to SPOOLES, PSPASES accepts limited
type of matrices and provides less functional-
ity. However, because of these limitations, it
is able to perform its tasks more e�ectively in
some cases. We use this package as a refer-
ence to judge the performance of SPOOLES.
To use this package we limit the test matrices
to be symmetric positive de�nite ones.

PLANSO This is a parallel version of the
Lanczos method with partial reorthogonaliza-
tion [12]. It implements the standard non-
restarted Lanczos algorithm for symmetric
generalized eigenvalue problems. The partial
reorthogonalization scheme monitors the loss
of orthogonality among the Lanczos vectors

and maintains a minimal orthogonality level
that is necessary to compute the Ritz values ac-
curately. This software package is used as the
basis for the shift-and-invert Lanczos method
with either PSPASES or SPOOLES as the lin-
ear system solver.

TRLan This software package implements a
version of the thick-restart Lanczos method
[13]. In theory, the thick-restart Lanczos algo-
rithm is equivalent to the implicitly restarted
Lanczos algorithm [2]. However, the thick-
restart Lanczos algorithm avoid some nu-
merical instabilities of the implicit restarting
scheme and TRLan also implements more so-
phisticated restarting strategies.

3 Performance characteristics

Since there are general purpose direct solver
packages for distributed parallel machines, the
shift-and-invert Lanczos method is an available
option if the matrix is explicitly generated and
the factors can be stored. To answer the ques-
tion of whether it is an e�ective option, this
section will show its performance characteris-
tics by using PLANSO with SPOOLES and
PSPASES. Most of the algorithmic issues have
been carefully studied before [6].

In the shift-and-invert Lanczos method, the
most time-consuming operation is the factor-
ization of the matrix and the solution of the
linear systems. The factorization step is done
once for each matrix and the triangular solu-
tion step is invoked at each Lanczos iteration.
Typically, it needs about 3 { 5 Lanczos itera-
tions to compute one eigenvalue. Unless a large
number of eigenpairs are wanted, the factoriza-
tion time dominates the whole computation.
For these reasons, we will discuss the factor-
ization time and solution time separately.

The �rst set of tests shown in Tables 2 and
3 uses SPOOLES to solve a set of linear sys-
tems with 3-dimensional 27-point stencil ma-
trices, Table 2 shows the factorization time and
Table 3 shows the solution time. The tests
are conducted using a Cray T3E 900 massively
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Table 2: Time (seconds) used to factor a series of 3-D 27-point stencil matrices.

# of PE
n 1 2 4 8 16 32 64 128 256 512

28 25.2 14.6 8.2 2.4 3.7 3.2 2.8 2.8 3.2 3.3
34 74.4 41.5 23.5 14.3 9.9 8.3 6.8 6.5 6.8 6.9
40 100.9 56.1 32.5 21.8 16.7 14.1 12.9 13.1 13.4
48 152.3 87.1 55.5 40.3 32.4 29.2 28.1
56 204.0 125.1 86.6 66.1 58.2

Table 3: Time (seconds) used to solve four linear systems with triangular factors of the 3-D 27-point
stencil matrices.

# of PE
n 1 2 4 8 16 32 64 128 256 512

28 1.1 0.6 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1
34 2.3 1.2 0.6 0.6 0.3 0.3 0.3 0.2 0.2 0.3
40 2.2 1.2 0.9 0.5 0.5 0.4 0.4 0.4 0.4
48 2.4 1.4 1.3 0.8 0.8 0.7 0.7
56 3.5 2.3 1.7 1.3 1.2

Table 1: The sizes of 3-D 27-point stencil ma-
trices (A) and their triangular factors (U).

n N(� n3) NNZ(A) NNZ(U)

28 2:2� 104 5:5 � 105 5:7 � 106

34 3:9� 104 1:0 � 106 1:3 � 107

40 6:4� 104 1:6 � 106 2:5 � 107

48 1:1� 105 2:9 � 106 5:4 � 107

56 1:8� 105 4:6 � 106 1:0 � 108

parallel computer. The test matrices are gen-
erated on a uniform n�n�n grid. The blank
cells in the lower left corner are due to mem-
ory limitations of the processors. Each proces-
sor of this T3E has only 256 MB(MegaBytes)
of memory. The blank cells in the lower right
corner are due to some limitations in the cur-
rent release of the SPOOLES software. From
Table 1, it is clear that the factorized form has
many more nonzero entries than the original
matrix (NNZ(A) / n3, NNZ(U) / n4). All the
test matrices shown here can be stored on one

processor of the T3E, however, at least eight
processors are need to store the triangular fac-
tor of the matrix based on the 56 � 56 � 56
grid. When a sparse matrix is stored in mem-
ory, only a very small amount of additional
memory is needed to perform a distributed
matrix-vector multiplication eÆciently. Thus,
the eigenvalues of a much larger matrix can be
computed if only matrix-vector multiplication
is used.

From the data in Table 2 and 3 we see that
if the minimum number of processors needed
to perform the factorization is p0, the parallel
eÆciency of using twice as many processors is
roughly 80%. As more and more processors are
used, the execution time quickly approaches a
minimal value and the parallel eÆciency ap-
proaches p0=p where p is the number of pro-
cessors used. For these grid matrices, the exe-
cution time almost reaches the minimum when
using 16p0 processors. Using more processors
does not generate meaningful additional reduc-
tion in computer time. In fact, the time may
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Table 4: Information about the Harwell-Boeing test matrices.

name N NNZ description

CT20 52329 1375396 an engine block
NASASRB 54870 2677324 shuttle rocket booster
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Figure 1: Time to factor the two Harwell-
Boeing matrices.

actually increase.

The second set of test matrices are two large
symmetric matrices in Harwell-Boeing format
[5]. Information about the matrices are listed
in Table 4. The time used to factor these two
test matrices by the SPOOLES and PSPASES
are shown in Figure 1. It is clear that as more
processors are employed for the factorization,
the time does not proportionally decrease. In
fact, as the number of processors change from
2 to 64, the time decrease about 20 seconds
in each of the four test cases (speedup: 1.3
{ 2.1). Because these two matrices has more
complicated nonzero patterns than the sim-
ple grid matrices tested previously, the paral-
lel eÆciency of the factorization procedures are
worse than before.

Some additional performance information
about the factorizations are shown in Table 5.
These data are collected using 8 processors.
They are aggregate data, where NNZ(U) is
the total number of nonzero entries in the tri-
angular factor, OPS is the total number of


oating-point operations used during the fac-
torization and MFLOPS is the aggregate speed
of all 8 processors. PSPASES generates about
30-40 percent more nonzero entries in U and
uses about twice as many 
oating-point op-
erations as SPOOLES. These di�erences are
mainly due to di�erent reordering strategies
used. PSPASES employs parMETIS to per-
form reordering; SPOOLES performs many
independent multi-section ordering and min-
imal degree ordering, then chooses the best
one. The ordering algorithm in SPOOLES
takes more time. On the two test matrices,
the ordering generated by SPOOLES leads to
smaller triangular factors, but the arithmetic
operations in PSPASES have more opportu-
nity to use dense BLAS functions which can
compute at higher speed. In addition, because
PSPASES does not perform pivoting, its in-
ternal data structure and data communication
pattern can be completely determined during
the symbolic factorization phase which also re-
duces the time needed for the numerical factor-
ization phase. On the two test problems, the
speed of PSPASES is considerably higher than
that of SPOOLES.

The timing results of solving linear systems
using the triangular factors are shown in Fig-
ure 2. As the number of processors changes
from 2 to 64, the solution time decreases by a
factor of 4. The triangular solution stages of
the two packages are more eÆcient than the
factorization stages. Because of di�erences in
ordering, PSPASES also uses less time to per-
form the triangular solution than SPOOLES
on the two test problems. Similar to the factor-
ization time, the parallel eÆciencies for solving
these two matrices are lower than solving the
grid matrices test problems.

Figure 3 shows the total time used by
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Table 5: Performance information about factorizations on 8 processors.

CT20 NASASRB
SPOOLES PSPASES SPOOLES PSPASES

NNZ(U) 1:0 � 107 1:4� 107 1:0 � 107 1:3� 107

OPS 5:2 � 109 1:3 � 1010 2:8 � 109 5:9� 109

MFLOPS 59:4 461 81:1 283
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Figure 2: Time to solve with the triangular
factors of two Harwell-Boeing matrices.
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Figure 3: Time to run PLANSO for 25 steps.

PLANSO to take 25 Lanczos steps. The
time shown here include both the factorization,
the triangular solution and other operations
needed by the Lanczos method such as the or-
thogonalization, the Rayleigh-Ritz projection,
etc.. For both test matrices, 25 Lanczos steps
is suÆcient to compute 3 smallest eigenvalues
and the corresponding eigenvectors. Compar-
ing Figure 1 and 3, it is clear that the factoriza-
tion time dominates the overall execution time.
The total time used by PLANSO does not de-
crease signi�cantly as the number of processors
increases.

When the shift-and-invert scheme is not
used, the most time-consuming operation in
the Lanczos method is multiplying the matrix
with a vector. Many researchers have shown
that this operation can be parallelized e�ec-
tively [9, 11]. Thus, the Lanczos method with-
out shift-and-invert can be run eÆciently on
parallel machines [12]. In particular, when us-
ing the uniform grid as the test problem, if the
number of grid points is scaled as the number
of processors increases, the perfect parallel ef-
�ciency can be achieved. Clearly, the direct
methods are yet to achieve the same level of
parallel eÆciency.

4 Shift-and-invert or restart

This section tries to answer the question: when
is the shift-and-invert Lanczos method pre-
ferred over the restarted method. As long as
an appropriate shift can be determined and
the factorization can be computed, the shift-
and-invert Lanczos method should be able to
compute any eigenvalue and the associated
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Table 6: Number of Lanczos steps to compute
�ve eigenvalues of three diagonal matrices us-
ing TRLan(25).

N Al Aq Ac

100 286 297 527
1000 1250 7720 > 10000
10000 13691 > 10000 > 10000

Table 7: The relative gap ratios.

N Aq Ac Al

100 3� 10�4 8� 10�6 2:5� 10�3

1000 3� 10�6 8� 10�9 1:6� 10�4

10000 3� 10�8 8� 10�12 1:2� 10�5

eigenvector. If the goal is to compute some
eigenvalues in the minimal number of Lanc-
zos steps, the shift-and-invert scheme is usu-
ally preferred. However, if the goal is to com-
pute some eigenvalues in the least amount of
time, the restarted Lanczos method may be
preferred. This section will give some concrete
examples to demonstrate the point.

When trying to compute the largest eigen-
values of the NASASRB matrix, 5 seconds are
needed using the Lanczos method on 2 pro-
cessors. Clearly, the shift-and-invert scheme
is not appropriate here because the factoriza-
tion takes about 30 seconds on 2 processors.
On the other hand, as little as 21 seconds
are needed to compute the smallest eigenval-
ues of NASASRB with shift-and-invert Lanc-
zos method on 32 processors, but 2587 seconds
are needed for PLANSO on the same number
of processors without shift-and-invert. In this
case, 11619 Lanczos steps are taken and 11619
Lanczos vectors are stored. Even if restarting
is used, we can reduce the memory but not
time. For example, if 1000 Lanczos vectors are
stored, TRLan needs 8546 seconds to compute
the smallest eigenvalue of NASASRB on 8 pro-
cessors. Clearly, the shift-and-invert Lanczos
method is preferred in this case.

To get a better understanding of what type
of eigenvalue problems can be solved without
shift-and-invert, we apply the restarted Lanc-
zos method to three simple matrices of varying
diÆculties. They are:

Aq = diag(12; 22; 32; : : :);

Ac = diag(13; 23; 33; : : :);

Al = diag(log 2; log 3; log 4; : : :):

The next set of tests tries to compute the
�ve smallest eigenvalues of Aq and Ac, and
the �ve largest eigenvalues of Al using TR-
Lan [13]. Table 6 shows the number of Lanc-
zos steps needed when the basis size is 25. If
the shift-and-invert Lanczos method were used,
the wanted eigenvalues are computed within 20
Lanczos steps.

From analysis, we know that the converge
rate of the restarted Lanczos method is related
to the relative gap ratio [8]. The relative gap
ratios of the test problems are shown in Ta-
ble 7. Let �1; �2; : : : ; �N denote the eigenval-
ues of the test matrices in ascending order,
the relative gap ratio shown in Table 7 are
(�2 � �1)=(�N � �1) for Aq and Ac, (�N �

�N�1)=(�N ��1) for Al. From this set of tests,
we see that when the relative gap is less than
10�9, TRLan cannot compute the eigenvalues
in less than 10000 steps. The smallest eigen-
value of NASASRB has a relative gap ratio of
10�10. The restarted Lanczos method needs
more than 50000 steps with a basis of 1000
vectors. This indicates that it is possible for
TRLan to compute very diÆcult eigenvalues,
however it needs to keep a large number of
Lanczos vectors and it may take a large num-
ber of iterations.

The comparison here is only on extreme
eigenvalues, if an interior eigenvalue is wanted,
the spectrum needs to be transformed so that
the wanted eigenvector corresponds to an ex-
treme eigenvalue. There are di�erent ways
to achieve this, but often the shift-and-invert
scheme is the most e�ective one.
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5 Summary

From the tests conducted, we see that if the
relative gap ratio of the wanted eigenvalue is
smaller than 10�9 the shift-and-invert scheme
is likely necessary. At this time, the two par-
allel direct methods package tested does not
exhibit the same level of parallel eÆciency as
sparse matrix-vector multiplications. However,
it is still an e�ective choice if the LU factors
can be stored. Between the two direct solvers
tested, PSPASES often uses less time than
SPOOLES. However, SPOOLES is more ro-
bust for more general shift-and-invert schemes.
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